Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

  • Download 30
  • File Size 2 MB
  • File Count 1
  • Create Date May 13, 2024
  • Last Updated May 13, 2024

A Comparative Analysis of Advanced Machine Learning Techniques for River Streamflow Time-Series Forecasting

Antoifi Abdoulhalik* and Ashraf A. Ahmed

Department of Civil and Environmental Engineering, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK

Abstract

This study examines the contribution of rainfall data (RF) in improving the streamflow-forecasting accuracy of advanced machine learning (ML) models in the Syr Darya River Basin. Different sets of scenarios included rainfall data from different weather stations located in various geographical locations with respect to the flow monitoring station. Long short-term memory (LSTM)-based models were used to examine the contribution of rainfall data on streamflow-forecasting performance by investigating five scenarios whereby RF data from different weather stations were incorporated depending on their geographical positions. Specifically, the All-RF scenario included all rainfall data collected at 11 stations; Upstream-RF (Up-RF) and Downstream-RF (Down-RF) included only the rainfall data measured upstream and downstream of the streamflow-measuring station; Pearson-RF (P-RF) only included the rainfall data exhibiting the highest level of correlation with the streamflow data, and the Flow-only (FO) scenario included streamflow data. The evaluation metrics used to quantitively assess the performance of the models included the RMSE, MAE, and the coefficient of determination, R2. Both ML models performed best in the FO scenario, which shows that the diversity of input features (hydrological and meteorological data) did not improve the predictive accuracy regardless of the positions of the weather stations. The results show that the P-RF scenarios yielded better prediction accuracy compared to all the other scenarios including rainfall data, which suggests that only rainfall data upstream of the flow monitoring station tend to make a positive contribution to the model’s forecasting performance. The findings evidence the suitability of simple monolayer LSTM-based networks with only streamflow data as input features for high-performance and budget-wise river flow forecast applications while minimizing data processing time.
How to cite. 
Abdoulhalik, Antoifi, and Ashraf A. Ahmed. 2024. "A Comparative Analysis of Advanced Machine Learning Techniques for River Streamflow Time-Series Forecasting" Sustainability 16, no. 10: 4005. https://doi.org/10.3390/su16104005