Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

  • Download 10
  • File Size 286.96 KB
  • File Count 1
  • Create Date July 4, 2024
  • Last Updated July 4, 2024

Dynamic spatiotemporal migration of cross-sectoral cascading drought events across climate zones

Lu Tian, Jingshui Huang, and Markus Disse

Technical University of Munich, Civil, Geo and Environmental Engineering, Chair of Hydrology and River Basin Management, München, Germany (lu.tian@tum.de)

Abstract

Anthropogenic global warming is exacerbating the frequency and severity of extreme droughts, reinforcing cascading effects across sectors and increasing the urgency of research on the systematic risks associated with droughts. Current research on cascading droughts is predominantly constrained to examining the temporal delay response of cross-sectoral droughts within single characterized regions or climate zones. The dynamic spatio-temporal migration of cross-system cascading drought chains across multiple climate zones remains unexplored. In this study, we rely on the highly precise event-by-event link between multiple types of droughts and make the first attempt to investigate the dynamic spatio-temporal migration trajectory of cross-system cascading droughts across multiple climate zones in Central Asia, including arid desert (AD), arid steppe (AS), temperate (T), cold (C) and alpine (Alp). The results capture for the first time the apparent spatial aggregation state of cascading drought events in the three climate zone combinations AD+AS, AD+AS+C+Alp, and AD+AS+Alp. The transition zone, from the alpine to the arid desert (AD+AS+C+Alp), represents a climate zone combination with the highest systematic drought risk zone, marked by the highest occurrence of the four-system cascading drought event involving droughts of precipitation, evaporation, runoff, and soil moisture. The typical cascading drought pattern shows that the hotspot gradually moves away from the Alp and C to AD and AS climate zones, implying the effect of the interplay between different climate zones on drought evolution. Our findings recommend that early warnings of systematic drought risk should not be limited to temporal links alone but should include both spatial and temporal aspects.

How to cite: Tian, L., Huang, J., and Disse, M.: Dynamic spatiotemporal migration of cross-sectoral cascading drought events across climate zones , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17075, https://doi.org/10.5194/egusphere-egu24-17075, 2024.